login
a(n) is the least positive integer such that the integer part of the arithmetic-geometric mean of a(n) and 1 is equal to 2^n.
3

%I #12 Sep 28 2019 04:49:06

%S 1,4,10,24,55,127,288,640,1408,3069,6642,14281,30544,65028,137896,

%T 291399,613885,1289715,2702909,5652038,11795170,24570079,51095155,

%U 106092067,219972452,455493427,942031726,1946056082,4015916211

%N a(n) is the least positive integer such that the integer part of the arithmetic-geometric mean of a(n) and 1 is equal to 2^n.

%F floor( agm(a(n), 1) ) = 2^n, for n>=0.

%t Flatten[{1, Table[Ceiling[y /. FindRoot[Log[Pi/(2*EllipticK[1 - y^2])] == n*Log[2], {y, n*2^n}, MaxIterations -> 1000]], {n, 1, 50}]}] (* _Vaclav Kotesovec_, Sep 28 2019 *)

%Y Cf. A090852, A090854, A090856.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 10 2003