Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 18 2024 08:26:00
%S 290,550,850,1060,2650,3035,3245,5015,5105,8935,10615,11890,12925,
%T 13485,13905,14850,15215,15985,17560,17600,18105,19925,20135,21780,
%U 23510,24040,25490,28830,31145,34365,36355,38140,38370,42025,43845,46820,47575,48745,49130,50495,53350
%N Numbers k such that 6*k+1, 6*k+7, 6*k+13, 6*k+19 are consecutive primes.
%C All terms are == 0 (mod 5). - _Robert G. Wilson v_, Dec 12 2017
%H Robert Israel, <a href="/A090839/b090839.txt">Table of n, a(n) for n = 1..10000</a>
%e 6*290 + 1 = 1741, 6*290 + 7 = 1747, 6*290 + 13 = 1753, 6*290 + 19 = 1759 and 1741, 1747, 1753, 1759 are consecutive primes, so 290 is a term.
%t Block[{nn = 50500, s}, s = Select[Prime@ Range@ PrimePi[6 (nn + 3) - 1], Divisible[(# + 1), 6] &]; Select[Range@ nn, And[AllTrue[#, PrimeQ], Count[s, q_ /; First[#] < q < Last@ #] == 0] &@ Map[6 # + 1 &, # + Range[0, 3]] &]] (* _Michael De Vlieger_, Dec 06 2017 *)
%t fQ[n_] := Block[{p = {6n +1, 6n +7, 6n +13, 6n +19}}, Union@ PrimeQ@ p == {True} && NextPrime[6n +1, 3] == 6n +19]; Select[5 Range@ 10100, fQ] (* _Robert G. Wilson v_, Dec 12 2017 *)
%o (PARI) isok(n) = my(p,q,r); isprime(p=6*n+1) && ((q=6*n+7) == nextprime(p+1)) && ((r=6*n+13) == nextprime(q+1)) && (6*n+19 == nextprime(r+1)); \\ _Michel Marcus_, Sep 20 2019
%Y Cf. A033451, A090832, A090833, A090834, A090835, A090836, A090837, A090838.
%K easy,nonn
%O 1,1
%A _Pierre CAMI_, Dec 09 2003
%E Missing term 5105 and more terms from _Michel Marcus_, Sep 20 2019