Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 23 2022 18:26:46
%S 0,1,4,243,1048576,762939453125,170581728179578208256,
%T 18562115921017574302453163671207,
%U 1427247692705959881058285969449495136382746624,106111661199647248543687855752712667991103904330482569981872649
%N Number of n-element labeled groupoids with an identity.
%C Also labeled groupoids with an absorbant (zero) element.
%H Andrew Howroyd, <a href="/A090602/b090602.txt">Table of n, a(n) for n = 0..20</a>
%H Eric Postpischil <a href="http://groups.google.com/groups?&hl=en&lr=&ie=UTF-8&selm=11802%40shlump.nac.dec.com&rnum=2">Posting to sci.math newsgroup, May 21 1990</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Groupoid.html">Groupoid</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Magma_(algebra)">Magma (algebra)</a>
%H <a href="/index/Gre#groupoids">Index entries for sequences related to groupoids</a>
%F a(n) = n^((n-1)^2+1).
%F a(n) = A090603(n)*n.
%o (PARI) a(n) = n^((n-1)^2+1) \\ _Andrew Howroyd_, Jan 23 2022
%Y Cf. A090601 (isomorphism classes), A090603.
%K nonn
%O 0,3
%A _Christian G. Bower_, Dec 05 2003
%E a(0)=0 prepended and a(9) added by _Andrew Howroyd_, Jan 23 2022