

A090519


Smallest prime p such that floor((10^n)/p) is prime, or 0 if no such number exists.


3



2, 13, 23, 13, 89, 19, 7, 47, 67, 13, 17, 157, 17, 313, 107, 409, 151, 773, 149, 409, 109, 13, 29, 211, 7, 19, 149, 431, 859, 43, 109, 167, 277, 13, 2293, 173, 907, 107, 1087, 617, 449, 1013, 73, 1249, 743, 109, 233, 499, 191, 479
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: No term is zero. Subsidiary Sequence: Number of primes in floor((10^n)/p), p is a prime. a(1) = 3, the primes are 10/2, floor(10/3) and 10/5.


LINKS

Table of n, a(n) for n=1..50.


EXAMPLE

a(5) = 89, as floor((10^5)/89) = 1123 is the largest such prime.


MATHEMATICA

<<NumberTheory`; Do[k = 2; While[ !PrimeQ[Floor[10^n / k]], k = NextPrime[k]]; Print[k], {n, 1, 50}] (* Ryan Propper, Jun 19 2005 *)


CROSSREFS

Cf. A090517, A090518, A090520.
Sequence in context: A061385 A304815 A156179 * A018540 A045388 A118796
Adjacent sequences: A090516 A090517 A090518 * A090520 A090521 A090522


KEYWORD

base,nonn


AUTHOR

Amarnath Murthy, Dec 07 2003


EXTENSIONS

Corrected and extended by Ryan Propper, Jun 19 2005


STATUS

approved



