login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090452 Scaled array A078740 ((3,2)-Stirling2). 9
1, 1, 3, 2, 1, 7, 16, 15, 5, 1, 12, 51, 105, 114, 63, 14, 1, 18, 118, 396, 771, 910, 644, 252, 42, 1, 25, 230, 1110, 3235, 6083, 7580, 6240, 3270, 990, 132, 1, 33, 402, 2600, 10365, 27483, 50464, 65331, 59625, 37620, 15642, 3861, 429, 1, 42, 651, 5390, 27825, 97188 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

This scaled Stirling2 array will be called s2_{3,2}(n,m).

The sequence of row lengths is [1,3,5,7,...]=A005408(n-1).

The generating function for the sequence from column nr. m is G(m,x)=(x^ceiling(m/2))*P(m,x)/(1-x)^(2*m-3) with the row polynomials of array A091029(m,k).

The generating functions of the column sequences obey the hypergeometric differential-difference eq.:x*(1-x)*G''(m,x) + 2*(1-m*x)*G'(m,x) - m*(m-1)*G(m,x) = 2*m*x*G'(m-1,x) + 2*m*(m-1)*G(m-1,x) + m*(m-1)*G(m-2,x), m>=3; with G(2,x)=x/(1-x) and G(1,x)=0. The primes denote differentiation w.r.t. x.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000 (rows 1 <= n <= 100, flattened.)

Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.

W. Lang, First 8 rows.

FORMULA

a(n, m)=(m!/((n+1)!*n!))*A078740(n, m), n>=1, 2<= m <=2*n.

Recursion: a(n, m)=((n+m-1)*(n+m-2)*a(n-1, m)+2*(n+m-2)*m*a(n-1, m-1)+m*(m-1)*a(n-1, m-2))/((n+1)*n), n>=2, 2<=m<=2*n, a(1, 2)=1, a(n, 0) := 0, a(n, 1) := 0 (from the recursion of array A078740).

EXAMPLE

[1]; [1,3,2]; [1,7,16,15,5]; [1,12,51,105,114,63,14]; ...

MATHEMATICA

Table[(-1)^m*m!*HypergeometricPFQ[{2 - m, n + 1, n + 2}, {2, 3}, 1]/(2 (m - 2)!), {n, 8}, {m, 2, 2 n}] // Flatten (* Michael De Vlieger, Nov 21 2019, after Jean-Fran├žois Alcover at A078740. *)

CROSSREFS

a(n, 2*n)=A000108(n) (Catalan), n>=1, a(n, 2*n-1)=3*A002054(n-1), n>=2, a(n, 2*n-2)=A091031(n), n>=2.

The column sequences (without leading zeros) are: A000012 (powers of 1), A055998, A090453-4, A091026-7, etc.

Cf. A090442 (row sums). The alternating row sums are 0 except for row n=1 which gives 1.

Sequence in context: A143774 A196842 A158474 * A305538 A193924 A110439

Adjacent sequences:  A090449 A090450 A090451 * A090453 A090454 A090455

KEYWORD

nonn,easy,tabf

AUTHOR

Wolfdieter Lang, Dec 23 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 03:28 EDT 2022. Contains 356029 sequences. (Running on oeis4.)