Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 May 16 2021 10:48:12
%S 11,23,29,31,43,47,59,61,71,79,83,109,113,127,151,157,167,173,179,181,
%T 191,223,229,233,239,241,251,271,283,317,337,347,349,353,359,367,373,
%U 379,383,431,433,439,457,463,467,479,487,491,499,503,509,541,563,599,607
%N Primes that can be written in binary representation as concatenation of other primes.
%C A090418(a(n)) > 1; subsequence of A090421.
%H Reinhard Zumkeller, <a href="/A090423/b090423.txt">Table of n, a(n) for n = 1..10000</a>
%e 337 is 101010001 in binary,
%e 10 is 2,
%e 10 is 2,
%e 10001 is 17, partition is 10_10_10001, so 337 is in the sequence.
%o (Python)
%o # Primes = [2,...,607]
%o from sympy import sieve
%o primes = list(sieve.primerange(1, 608))
%o def tryPartioning(binString): # First digit is not 0
%o l = len(binString)
%o for t in range(2, l-1):
%o substr1 = binString[:t]
%o if (int('0b'+substr1,2) in primes) or (t>=4 and tryPartioning(substr1)):
%o substr2 = binString[t:]
%o if substr2[0]!='0':
%o if (int('0b'+substr2,2) in primes) or (l-t>=4 and tryPartioning(substr2)):
%o return 1
%o return 0
%o for p in primes:
%o if tryPartioning(bin(p)[2:]):
%o print(p, end=',')
%o (Python)
%o from sympy import isprime, primerange
%o def ok(p):
%o b = bin(p)[2:]
%o for i in range(2, len(b)-1):
%o if isprime(int(b[:i], 2)) and b[i] != '0':
%o if isprime(int(b[i:], 2)) or ok(int(b[i:], 2)): return True
%o return False
%o def aupto(lim): return [p for p in primerange(2, lim+1) if ok(p)]
%o print(aupto(607)) # _Michael S. Branicky_, May 16 2021
%o (Haskell)
%o a090423 n = a090423_list !! (n-1)
%o a090423_list = filter ((> 1 ) . a090418 . fromInteger) a000040_list
%o -- _Reinhard Zumkeller_, Aug 06 2012
%o (PARI) is_A090423(n)={isprime(n)&&for(i=2, #binary(n)-2, bittest(n, i-1)&&isprime(n%2^i)&&is_A090421(n>>i)&&return(1))} \\ _M. F. Hasler_, Apr 21 2015
%Y Cf. A090422, A000040, A004676, A007088.
%K nonn,base
%O 1,1
%A _Reinhard Zumkeller_, Nov 30 2003
%E Corrected by _Alex Ratushnyak_, Aug 03 2012