

A090416


a(n) = if Floor[(2*Pi/E)*m] is prime then Floor[(2*Pi/E)*m]


0



2, 11, 13, 23, 41, 43, 53, 67, 71, 73, 83, 97, 101, 113, 127, 131, 157, 173, 191, 233, 251, 263, 277, 281, 293, 307, 337, 349, 353, 367, 379, 383, 397, 409, 439, 443, 457, 487, 499, 503, 547, 557, 563, 577, 587, 607, 617, 619, 631, 647, 661, 677, 691, 709, 739
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes that behave like Shannon entropy power white noise with n=1.
Since (2*Pi/E) is a transcendental irrational, this function is a kind of irrational rotation related function, that is: Mod[(2*Pi/E)*n,1] is an irrational rotation and these numbers are Beatty in type such that: Beatty number+ irrational rotation =n Of my experiments in white noise entropy powers N=2 gives the most primes


REFERENCES

C. E. Shannon, The Mathematical Theory of Communication, page 93


LINKS



MATHEMATICA

digits=5*200 f[n_]=Floor[(2*Pi/E)*n] a=Delete[Union[Table[If [PrimeQ[f[n]]==True, f[n], 0], {n, 1, digits}]], 1]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



