login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090393 Eighth diagonal (m=7) of triangle A084938; a(n) = A084938(n+7,n) = (n^7 + 63*n^6 + 1855*n^5 + 34125*n^4 + 438424*n^3 + 3980172*n^2 + 20946960*n)/5040. 2

%I

%S 0,5040,12288,22572,36992,56990,84432,121703,171816,238536,326520,

%T 441474,590328,781430,1024760,1332165,1717616,2197488,2790864,3519864,

%U 4410000,5490558,6795008,8361443,10233048,12458600,15093000,18197838

%N Eighth diagonal (m=7) of triangle A084938; a(n) = A084938(n+7,n) = (n^7 + 63*n^6 + 1855*n^5 + 34125*n^4 + 438424*n^3 + 3980172*n^2 + 20946960*n)/5040.

%H Chai Wah Wu, <a href="/A090393/b090393.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A084938(n+7, n) = Sum_{k=0..7} A090238(7, k)*binomial(n, k).

%F From _Chai Wah Wu_, Jun 04 2016: (Start)

%F a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n > 7.

%F G.f.: x*(3447*x^6 - 21824*x^5 + 57742*x^4 - 81760*x^3 + 65388*x^2 - 28032*x + 5040)/(x - 1)^8. (End)

%o (Python)

%o A090393_list, m = [], [1, 6, 25, 92, 327, 1142, 3447, 0]

%o for _ in range(1001):

%o A090393_list.append(m[-1])

%o print(m[-1])

%o for i in range(7):

%o m[i+1] += m[i] # _Chai Wah Wu_, Jun 04 2016

%Y Cf. A084938 A090238.

%K easy,nonn

%O 0,2

%A _Philippe Deléham_, Jan 31 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 10:05 EST 2022. Contains 350476 sequences. (Running on oeis4.)