|
|
A090337
|
|
Let b(0) = 1, b(n) = b(n-1) + (-1)^(n-1)*b(n-1)/10; sequence gives numerator of b(n).
|
|
0
|
|
|
1, 11, 99, 1089, 9801, 107811, 970299, 10673289, 96059601, 1056655611, 9509900499, 104608905489, 941480149401, 10356281643411, 93206534790699, 1025271882697689, 9227446944279201, 101501916387071211, 913517247483640899, 10048689722320049889
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 99^(n/2) if n is even else 11*99^((n-1)/2). a(n) = 99*a(n-2). G.f.: (1+11*x)/(1-99*x^2). - Philippe Deléham, Jan 28 2004
a(2n) = a(2n-1)*11 = 11*99^(n-1) . a(2n+1)= a(2n)*9 = 99^n . G.f.: x*(1+11x)/(1-99*x^2) . - Philippe Deléham, Jan 28 2004
a(n)=-(5/33)*(-1)^n*99^[(1/4)*(-1)^n]*99^(1/2)*n*11979^(1/4)+(2/11)*99^[(1/4)*(-1)^n]*99^(1/2 )*n*11979^(1/4), with n>=0 [From Paolo P. Lava, Nov 20 2008]
|
|
EXAMPLE
|
1, 11/10, 99/100, 1089/1000, 9801/10000, 107811/100000, 970299/1000000, ...
|
|
MAPLE
|
b := proc(n) option remember; if n = 0 then 1 else expand(simplify(b(n-1)+(-1)^(n+1)*b(n-1)/10)); fi; end;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Dario Ramos (dario_metal(AT)hotmail.com), Jan 27 2004
|
|
STATUS
|
approved
|
|
|
|