Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 01 2016 10:25:21
%S 1,-4,73,-3241,223546,-10884061,-5437091357,4560715140638,
%T -2741631069546683,1315509914960956853,-135771066929217673256,
%U -969783690708328561039261,1943740128890758048004419957,-2140191682145533094039398047820
%N Alternating row sums of array A078741 ((3,3)-Stirling2).
%D P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
%D M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem.</a>
%F a(n) := sum( A078741(n, k)*(-1)^(k+1), k=3..3*n), n>=1. a(0) := -1 may be added.
%F a(n) = -sum(((-1)^k)*(fallfac(k, 3)^n)/k!, k=3..infinity)*exp(1), with fallfac(k, 3)=A008279(k, 3)=k*(k-1)*(k-2) and n>=1. This produces also a(0)=-1.
%F E.g.f. if a(0)=-1 is added: -exp(1)*(sum(((-1)^k)*exp(fallfac(k, 3)*x)/k!, k=3..infinity)+1/2). Similar to derivation on top of p. 4656 of the Schork reference.
%t a[n_] := -Sum[(-1)^k FactorialPower[k, 3]^n/k!, {k, 2, Infinity}]*E; Array[a, 14] (* _Jean-François Alcover_, Sep 01 2016 *)
%Y Cf. A000587, A090211. A069223 (non-alternating sum, generalized Bell-numbers).
%K sign,easy
%O 1,2
%A _Wolfdieter Lang_, Dec 01 2003