login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090122
Numbers k such that nextprime(k^4) - prevprime(k^4) = 4.
4
2, 3, 21, 34, 46, 87, 99, 129, 141, 220, 242, 254, 266, 278, 279, 476, 526, 550, 616, 627, 657, 772, 777, 783, 795, 1072, 1088, 1322, 1442, 1486, 1540, 1552, 1586, 1653, 1725, 1833, 1959, 1994, 2001, 2043, 2068, 2192, 2224, 2360, 2384, 2432, 2734, 2770, 2866
OFFSET
1,1
LINKS
EXAMPLE
For k = 21: k^4 = 194481, q = nextprime(k^4) = 194483, p = prevprime(k^4) = 194479, q - p = 4, so 21 is in the sequence.
MATHEMATICA
pre[x_] := Prime[PrimePi[x]]; nex[x_] := Prime[PrimePi[x]+1]; de[x_] := Prime[PrimePi[x]+1]-Prime[PrimePi[x]]; k=4; Do[If[Equal[Prime[PrimePi[n^k]+1]-Prime[PrimePi[n^k]], 4], Print[n]], {n, 2, 100000}]
PROG
(PARI) is(k) = nextprime(k^4 + 1) - precprime(k^4 - 1) == 4; \\ Amiram Eldar, Jun 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 12 2004
EXTENSIONS
a(29)-a(49) from Giovanni Resta, May 08 2017
STATUS
approved