Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 10 2020 13:05:17
%S 1,0,3,1,6,1,3,1,9,2,3,2,6,3,3,2,12,3,3,2,6,4,3,4,9,4,3,3,6,3,3,3,15,
%T 4,3,2,6,3,3,2,9,4,4,2,6,3,4,3,12,3,4,6,6,3,3,3,9,2,3,4,6,2,3,4,18,5,
%U 4,2,6,6,3,4,9,2,3,2,6,1,3,4,12,6,4,3,6,2,3,5,9,5,3,3,6,6,3,3,15,4,3
%N Length of longest contiguous block of 0's in binary expansion of n^3.
%C a(n) >= 3*A007814(n). Conjecture: if n < 2^k then a(n) < 3*k. - _Robert Israel_, Mar 10 2020
%H Robert Israel, <a href="/A090049/b090049.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = A087117(A000578(n)).
%F a(n) <= 3*A070939(n) - 3 for n > 0. - _Charles R Greathouse IV_, Mar 10 2020
%p f:= proc(n) local R;
%p R:= convert(2*n^3+1,base,2);
%p R:= select(t -> R[t]=1, [$1..nops(R)]);
%p max(R[2..-1]-R[1..-2])-1
%p end proc:
%p f(0):= 1:
%p map(f, [$0..100]); # _Robert Israel_, Mar 10 2020
%o (PARI) a(n)=my(r,k,t=n^3); for(i=0,exponent(t), if(bittest(t,i), k=0, k++>r, r=k)); if(n, r, 1) \\ _Charles R Greathouse IV_, Mar 10 2020
%Y Cf. A000578, A007814, A023416, A087117, A090047, A090048, A090003.
%K nonn,base,easy
%O 0,3
%A _Reinhard Zumkeller_, Nov 20 2003