login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct lines through the origin in 6-dimensional cube of side length n.
12

%I #16 Mar 31 2021 09:45:29

%S 0,63,665,3969,14833,45801,112825,257257,515025,980217,1720145,

%T 2934505,4693473,7396137,11112129,16464385,23555441,33430033,45927505,

%U 62881561,83865257,111331241,144772201,187839225,238778281,303522401,379323785

%N Number of distinct lines through the origin in 6-dimensional cube of side length n.

%C Equivalently, lattice points where the GCD of all coordinates = 1.

%F a(n) = A090030(6, n).

%F a(n) = (n+1)^6 - 1 - Sum_{j=2..n+1} a(floor(n/j)). - _Chai Wah Wu_, Mar 30 2021

%e a(2) = 665 because the 665 points with at least one coordinate=2 all make distinct lines and the remaining 63 points and the origin are on those lines.

%t aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]];lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1;Table[lines[6, k], {k, 0, 40}]

%o (Python)

%o from functools import lru_cache

%o @lru_cache(maxsize=None)

%o def A090028(n):

%o if n == 0:

%o return 0

%o c, j = 1, 2

%o k1 = n//j

%o while k1 > 1:

%o j2 = n//k1 + 1

%o c += (j2-j)*A090028(k1)

%o j, k1 = j2, n//j2

%o return (n+1)**6-c+63*(j-n-1) # _Chai Wah Wu_, Mar 30 2021

%Y Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions. A090030 is the table for n dimensions, side length k.

%K nonn

%O 0,2

%A _Joshua Zucker_, Nov 25 2003