Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 01 2022 05:34:07
%S 6,43,356,3333,34754,398959,4996032,67741129,988344062,15434831091,
%T 256840738076,4536075689293,84731451264186,1668866557980343,
%U 34563571477305464,750867999393119889,17072113130285524982,405423357986250112699,10037458628015142154452
%N Permanent of (0,1)-matrix of size n X (n+d) with d=6 and n zeros not on a line.
%D Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
%H Vincenzo Librandi, <a href="/A090010/b090010.txt">Table of n, a(n) for n = 1..200</a>
%H Seok-Zun Song et al., <a href="https://doi.org/10.1016/S0024-3795(03)00382-3">Extremes of permanents of (0,1)-matrices</a>, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
%F a(n) = (n+5)*a(n-1) + (n-1)*a(n-2), a(1)=6, a(2)=43
%F G.f.: -1+hypergeom([1,7],[],x/(x+1))/(x+1) - _Mark van Hoeij_, Nov 07 2011
%F E.g.f.: -1 + exp(-x)/(1-x)^7. - _Vaclav Kotesovec_, Oct 21 2012
%F a(n) ~ n!*n^6/(720*e). - _Vaclav Kotesovec_, Oct 21 2012
%p A090010 := proc(n,d) local r; if (n=1) then r := d elif (n=2) then r := d^2+d+1 else r := (n+d-1)*A090010(n-1,d)+(n-1)*A090010(n-2,d) fi; RETURN(r); end: seq(A090010(n,6),n=1..18);
%t Rest[CoefficientList[Series[E^(-x)/(1-x)^7,{x,0,20}],x]*Range[0,20]!] (* _Vaclav Kotesovec_, Oct 21 2012 *)
%o (PARI) x='x+O('x^66); Vec(serlaplace(-1+exp(-x)/(1-x)^7)) \\ _Joerg Arndt_, May 11 2013
%Y Cf. A000255, A000153, A000261, A001909, A001910, A055790, A090012-A090016.
%K nonn,easy
%O 1,1
%A _Jaap Spies_, Dec 13 2003
%E Corrected by _Jaap Spies_, Jan 26 2004