Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 12 2013 03:08:08
%S 3,4,7,3,11,3,3,18,3,5,5,3,29,3,4,9,3,8,4,3,47,3,4,6,3,14,3,3,13,3,6,
%T 4,3,76,3,4,7,3,9,3,3,23,3,5,5,3,21,3,3,10,3,7,4,3,123,3,4,6,3,12,3,3,
%U 15,3,6,5,3,38,3
%N a(n) = floor( 1/( {n/phi}-{n/phi}^2 ) )-1, where {} is the fractional part and phi the golden ratio.
%C a(Fibonacci(n)) = Lucas(n), n>=2, where Fibonacci=A000045 and Lucas=A000032.
%C a(Lucas(n)) = Fibonacci(n), n>=4.
%C Examples: a(8) = 18, where 8 = Fibonacci(6) and 18 = Lucas(6). a(29) = 13, where 29 = Lucas(7) and 13 = Fibonacci(7).
%F a(n) = A089959(n) - 1.
%p fpart := proc(x)
%p x-floor(x) ;
%p end proc:
%p A089961 := proc(n)
%p invphi := 2/(1+sqrt(5)) ;
%p fn := fpart(n*invphi) ;
%p 1/fn/(1-fn);
%p floor(%)-1 ;
%p end proc: # _R. J. Mathar_, May 11 2013
%Y Cf. A001622, A089959.
%K nonn
%O 1,1
%A _Gary W. Adamson_, Nov 20 2003