login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089886
T(n,k) = number of subsets of {1,..., n} containing exactly k squares, triangle read by rows, 0<=k<n.
4
1, 2, 2, 4, 4, 0, 4, 8, 4, 0, 8, 16, 8, 0, 0, 16, 32, 16, 0, 0, 0, 32, 64, 32, 0, 0, 0, 0, 64, 128, 64, 0, 0, 0, 0, 0, 64, 192, 192, 64, 0, 0, 0, 0, 0, 128, 384, 384, 128, 0, 0, 0, 0, 0, 0, 256, 768, 768, 256, 0, 0, 0, 0, 0, 0, 0, 512, 1536, 1536, 512, 0, 0, 0, 0, 0, 0, 0, 0, 1024
OFFSET
1,2
COMMENTS
T(n,k)=T(n, A000196(n)-k) for 0<=k<=A000196(n);
T(n,k)=0 iff k > A000196(n);
A089887(n)=T(n,0); A089889(n)=T(n,1) for n>1; A089890(n)=T(n,2) for n>2;
A089888(n) = Sum(T(n,k): 1<=k<=A000196(n));
T(n,k) = A007318(A000196(n),k)*A000079(n-A000196(n)).
FORMULA
T(n, k) = binomial(floor(n^(1/2)), k)*2^(n-floor(n^(1/2))).
CROSSREFS
Cf. A000290.
Sequence in context: A074934 A376908 A376339 * A324648 A071511 A119922
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Nov 13 2003
STATUS
approved