Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Sep 23 2019 09:44:02
%S 1,1,5,13,54
%N Number of amphichiral alternating knots with n=2k crossings (k=2,3,4,...).
%D Liang C., Mislow K.: On amphicheiral knots. Journal of Mathematical Chemistry 15 (1994), 1-34.
%H Jablan S., <a href="http://www.mi.sanu.ac.rs/vismath/sl/index.html">Ordering Knots</a>.
%H Jablan S. and Sazdanovic R., <a href="http://www.mi.sanu.ac.rs/vismath/linknot/index.html">LinKnot</a>.
%e E.g. 22 for n=4; 2112 for n=6; 2222, 3113, 44, 8*, .2.2 for n=8, etc.
%K nonn
%O 4,3
%A Slavik Jablan and Radmila Sazdanovic, Jan 09 2004