Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 07 2016 12:36:28
%S 1,0,1,0,0,1,1,0,0,1,1,2,0,0,1,2,2,3,0,0,1,5,4,3,4,0,0,1,10,11,6,4,5,
%T 0,0,1,22,22,18,8,5,6,0,0,1,50,49,36,26,10,6,7,0,0,1,113,114,81,52,35,
%U 12,7,8,0,0,1,260,260,193,118,70,45,14,8,9,0,0,1,605,604,444,288,160,90,56
%N Triangle of T(n,k)=number of peakless Motzkin paths of length n having k (1,0) steps at level zero (can be easily translated into RNA secondary structure terminology).
%D A. Nkwanta, Lattice paths and RNA secondary structures, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.
%H P. R. Stein and M. S. Waterman, <a href="http://dx.doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1979), 261-272.
%H M. Vauchassade de Chaumont and G. Viennot, <a href="http://www.mat.univie.ac.at/~slc/opapers/s08viennot.html">Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire</a>, Sem. Loth. Comb. B08l (1984) 79-86. [Formerly: Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, p. 79-86.]
%H M. S. Waterman, <a href="http://www.cmb.usc.edu/people/msw/Waterman.html">Home Page</a> (contains copies of his papers)
%F G.f.= g/(1+zg-tzg), where g := (1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4))/(2z^2) is the g.f. of A004148.
%F T(n,m) = Sum_{j=0..n-m}((m+j+1)*binomial(m+j,j)*Sum_{i=0..(n-j+1)/2 }((binomial(m+j+2*i+1,i)*Sum_{k=0..n-m-j-2*i}(binomial(k,n-m-k-j-2*i)*binomial(m+k+j+2*i,k)*(-1)^(n-m-k)))/(m+j+2*i+1))). - _Vladimir Kruchinin_, Mar 07 2016
%e T(5,2)=3 because we have H'H'UHD, H'UHDH' and UHDH'H', where U=(1,1), D=(1,-1), H=(1,0) and H' indicates an H step at level zero.
%e 1; 0,1; 0,0,1; 1,0,0,1; 1,2,0,0,1; 2,2,3,0,0,1; 5,4,3,4,0,0,1; 10,11,6,4,5,0,0,1; 22,22,18,8,5,6,0,0,1;
%o (Maxima)
%o T(n,m):=sum((m+j+1)*binomial(m+j,j)*sum((binomial(m+j+2*i+1,i)*sum(binomial(k,n-m-k-j-2*i)*binomial(m+k+j+2*i,k)*(-1)^(n-m-k),k,0,n-m-j-2*i))/(m+j+2*i+1),i,0,(n-j+1)/2),j,0,n-m); /* _Vladimir Kruchinin_, Mar 07 2016 */
%Y Row sums give A004148.
%K nonn,tabl
%O 0,12
%A _Emeric Deutsch_, Jan 07 2004