|
|
A089689
|
|
a={1,3,7,9} a1={0,1,3,7,9} b[n]=Flatten[Table[10*Sum[10^m*a1[[1+Mod[n+m,5]]],{m,0,n}]+a,{n,0,digits}]] a(m) = If b[n] is prime then b[n]
|
|
0
|
|
|
3, 7, 311, 313, 317, 9733, 9739, 10973, 10979, 31097317, 73109731091, 97310973101, 97310973103, 97310973109733, 7310973109731091, 73109731097310973109731097, 97310973109731097310973101
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A sum method for producing a prime set based of two digits sets.
|
|
LINKS
|
Table of n, a(n) for n=1..17.
|
|
MATHEMATICA
|
a={1, 3, 7, 9} a1={0, 1, 3, 7, 9} digits=100 b=Flatten[Table[10*Sum[10^m*a1[[1+Mod[n+m, 5]]], {m, 0, n}]+a, {n, 0, digits}]]; c=Table[If[PrimeQ[b[[n]]]==True, b[[n]], 0], {n, 1, Dimensions[b][[1]]}] d=Delete[Union[c], 1]
|
|
CROSSREFS
|
Sequence in context: A088097 A064774 A348376 * A248701 A103317 A104051
Adjacent sequences: A089686 A089687 A089688 * A089690 A089691 A089692
|
|
KEYWORD
|
nonn,base,less,uned
|
|
AUTHOR
|
Roger L. Bagula, Jan 05 2004
|
|
STATUS
|
approved
|
|
|
|