login
Table T(n,k), n>=0 and k>=1, read by antidiagonals; the k-th row is defined by : partitions of k*n into powers of k (with T(0,k) = 1).
2

%I #8 Feb 22 2013 14:38:53

%S 1,1,1,1,2,1,1,4,2,1,1,6,3,2,1,1,10,5,3,2,1,1,14,7,4,3,2,1,1,20,9,6,4,

%T 3,2,1,1,26,12,8,5,4,3,2,1,1,36,15,10,7,5,4,3,2,1,1,46,18,12,9,6,5,4,

%U 3,2,1,1,60,23,15,11,8,6,5,4,3,2,1

%N Table T(n,k), n>=0 and k>=1, read by antidiagonals; the k-th row is defined by : partitions of k*n into powers of k (with T(0,k) = 1).

%H Alois P. Heinz, <a href="/A089688/b089688.txt">Table of n, a(n) for n = 0..10010</a>

%e Row k = 1 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (see A000012).

%e Row k = 2 : 1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, ... (see A000123).

%e Row k = 3 : 1, 2, 3, 5, 7, 9, 12, 15, 18, 23, 28, 33, ... (see A005704).

%e Row k = 4 : 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, ... (see A005705).

%e Row k = 5 : 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, ... (see A005706).

%K easy,nonn,tabl

%O 0,5

%A _Philippe Deléham_, Jan 05 2004