login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = binomial(n,2*k)*binomial(2*k,k) for 0 <= k <= n, triangle read by rows.
17

%I #66 Jun 23 2023 15:55:55

%S 1,1,0,1,2,0,1,6,0,0,1,12,6,0,0,1,20,30,0,0,0,1,30,90,20,0,0,0,1,42,

%T 210,140,0,0,0,0,1,56,420,560,70,0,0,0,0,1,72,756,1680,630,0,0,0,0,0,

%U 1,90,1260,4200,3150,252,0,0,0,0,0,1,110,1980,9240,11550,2772,0,0,0,0,0,0,1,132,2970,18480,34650,16632,924,0,0,0,0,0,0,1,156,4290,34320,90090,72072,12012,0,0,0,0,0,0,0,1,182,6006,60060,210210,252252,84084,3432,0,0,0,0,0,0,0

%N T(n,k) = binomial(n,2*k)*binomial(2*k,k) for 0 <= k <= n, triangle read by rows.

%C The rows of this triangle are the gamma vectors of the n-dimensional type B associahedra (Postnikov et al., p.38 ). Cf. A055151 and A101280. - _Peter Bala_, Oct 28 2008

%C T(n,k) is the number of Grand Motzkin paths of length n having exactly k upsteps (1,1). Cf. A109189, A055151. - _Geoffrey Critzer_, Feb 05 2014

%C The result Sum_{k = 0..floor(n/2)} C(n,2*k)*C(2*k,k)*x^k = (sqrt(1 - 4*x))^n* P(n,1/sqrt(1 - 4*x)) expressing the row polynomials of this triangle in terms of the Legendre polynomials P(n,x) is due to Catalan. See Laden, equation 7.10, p. 56. - _Peter Bala_, Mar 18 2018

%H Alois P. Heinz, <a href="/A089627/b089627.txt">Rows n = 0..140, flattened</a>

%H Rui Duarte and António Guedes de Oliveira, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Duarte/duarte7.html">A Famous Identity of Hajós in Terms of Sets</a>, Journal of Integer Sequences, Vol. 17 (2014), #14.9.1.

%H Hyman N. Laden, <a href="https://drum.lib.umd.edu/handle/1903/16857">An historical, and critical development of the theory of Legendre polynomials before 1900</a>, Master of Arts Thesis, University of Maryland 1938.

%H Shi-Mei Ma, <a href="http://arxiv.org/abs/1304.6654">On gamma-vectors and the derivatives of the tangent and secant functions</a>, arXiv:1304.6654 [math.CO], 2013.

%H A. Postnikov, V. Reiner, and L. Williams, <a href="http://arxiv.org/abs/math/0609184">Faces of generalized permutohedra</a>, arXiv:math/0609184 [math.CO], 2006-2007.

%F T(n,k) = n!/((n-2*k)!*k!*k!).

%F E.g.f.: exp(x)*BesselI(0, 2*x*sqrt(y)). - _Vladeta Jovovic_, Apr 07 2005

%F O.g.f.: ( 1 - x - sqrt(1 - 2*x + x^2 - 4*x^2*y))/(2*x^2*y). - _Geoffrey Critzer_, Feb 05 2014

%F R(n, x) = hypergeom([1/2 - n/2, -n/2], [1], 4*x) are the row polynomials. - _Peter Luschny_, Mar 18 2018

%F From _Peter Bala_, Jun 23 2023: (Start)

%F T(n,k) = Sum_{i = 0..k} (-1)^i*binomial(n, i)*binomial(n-i, k-i)^2. Cf. A063007(n,k) = Sum_{i = 0..k} binomial(n, i)^2*binomial(n-i, k-i).

%F T(n,k) = A063007(n-k,k); that is, the diagonals of this table are the rows of A063007. (End)

%e Triangle begins:

%e 1

%e 1, 0

%e 1, 2, 0

%e 1, 6, 0, 0

%e 1, 12, 6, 0, 0

%e 1, 20, 30, 0, 0, 0

%e 1, 30, 90, 20, 0, 0, 0

%e 1, 42, 210, 140, 0, 0, 0, 0

%e 1, 56, 420, 560, 70, 0, 0, 0, 0

%e 1, 72, 756, 1680, 630, 0, 0, 0, 0, 0

%e 1, 90, 1260, 4200, 3150, 252, 0, 0, 0, 0, 0

%e 1, 110, 1980, 9240, 11550, 2772, 0, 0, 0, 0, 0, 0

%e 1, 132, 2970, 18480, 34650, 16632, 924, 0, 0, 0, 0, 0, 0

%e Relocating the zeros to be evenly distributed and interpreting the triangle as the coefficients of polynomials

%e 1

%e 1

%e 1 + 2 q^2

%e 1 + 6 q^2

%e 1 + 12 q^2 + 6 q^4

%e 1 + 20 q^2 + 30 q^4

%e 1 + 30 q^2 + 90 q^4 + 20 q^6

%e 1 + 42 q^2 + 210 q^4 + 140 q^6

%e 1 + 56 q^2 + 420 q^4 + 560 q^6 + 70 q^8

%e then the substitution q^k -> 1/(floor(k/2)+1) gives the Motzkin numbers A001006.

%e - _Peter Luschny_, Aug 29 2011

%p for i from 0 to 12 do seq(binomial(i, j)*binomial(i-j, j), j=0..i) od; # _Zerinvary Lajos_, Jun 07 2006

%p # Alternatively:

%p R := (n, x) -> simplify(hypergeom([1/2 - n/2, -n/2], [1], 4*x)):

%p Trow := n -> seq(coeff(R(n,x), x, j), j=0..n):

%p seq(print(Trow(n)), n=0..9); # _Peter Luschny_, Mar 18 2018

%t nn=15;mxy=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y);Map[Select[#,#>0&]&, CoefficientList[Series[1/(1-x-2y x^2mxy),{x,0,nn}],{x,y}]]//Grid (* _Geoffrey Critzer_, Feb 05 2014 *)

%o (PARI)

%o T(n,k) = binomial(n,2*k)*binomial(2*k,k);

%o concat(vector(15, n, vector(n, k, T(n-1, k-1)))) \\ _Gheorghe Coserea_, Sep 01 2018

%Y Row sums A002426. Antidiagonal sums A098479.

%Y Cf. A055151, A063007, A109187, A101280.

%K easy,nonn,tabl

%O 0,5

%A _Philippe Deléham_, Dec 31 2003