The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089624 Expansion of sqrt(2/Pi*EllipticK(4*sqrt(x))). 1
 1, 2, 16, 168, 1986, 25092, 330816, 4492560, 62352720, 879956000, 12583279360, 181872982400, 2652039363240, 38959845007440, 575974743052800, 8561706637619520, 127874111328349890, 1917875205285147780 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS When convolved with itself gives A002894. LINKS G. C. Greubel, Table of n, a(n) for n = 0..450 FORMULA Expansion of theta_3(q) in powers of (m/16) where q = exp(-Pi K'/K) and m = k^2 is the elliptic modulus. - Michael Somos, Aug 17 2007 a(n) ~ 2^(4*n-1) / (n*sqrt(Pi*log(n))) * (1 - (gamma/2 + 2*log(2)) / log(n) + (3*gamma^2/8 + 3*log(2)*gamma + 6*log(2)^2 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019 MATHEMATICA nmax = 20; CoefficientList[Series[Sqrt[Sum[Binomial[2*k, k]^2*x^k, {k, 0, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2018 *) nmax = 20; CoefficientList[Series[Sqrt[2*EllipticK[16*x]/Pi], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 10 2018 *) PROG (PARI) {a(n) = if(n<0, 0, polcoeff( sqrt( sum(k=0, n, binomial(2*k, k)^2 * x^k, x*O(x^n)) ), n))} /* Michael Somos, Aug 17 2007 */ (PARI) {a(n) = local(A); if(n<0, 0, A = x*O(x^n); polcoeff( subst( sum(k = 1, sqrtint(n), 2*x^k^2, 1+A), x, serreverse(x * (eta(x+A) * eta(x^4+A)^2 / eta(x^2+A)^3)^8 )), n))} /* Michael Somos, Aug 17 2007 */ CROSSREFS Cf. A036917. Sequence in context: A275912 A337870 A181914 * A217804 A217799 A123555 Adjacent sequences:  A089621 A089622 A089623 * A089625 A089626 A089627 KEYWORD nonn AUTHOR D. G. Rogers and Vladeta Jovovic, Dec 31 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 13:47 EST 2021. Contains 349420 sequences. (Running on oeis4.)