login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+1) = the n-th term of the n-th binomial transform.
0

%I #5 Mar 30 2012 18:36:39

%S 1,1,2,10,82,946,14246,267974,6117202,166015698,5273053710,

%T 193534712510,8119820921626,385777848702394,20583872009571798,

%U 1224407374239009622,80669343513439179922,5852864801437926734482,465237079520383362585598

%N a(n+1) = the n-th term of the n-th binomial transform.

%C Form a square array where the n-th row is the n-th binomial transform of this sequence, starting with this sequence in the zeroth row; then the diagonal of the square array so formed is this sequence shifted 1 place left.

%F a(n+1) = sum(k=0, n, a(k)*binomial(n, k)*n^(n-k))

%e Note the diagonal in the array of iterated binomial transforms:

%e [_1,1,2,10,82,946,14246,267974,..]

%e [1,_2,5,20,139,1482,21389,390832,..]

%e [1,3,_10,42,258,2438,32854,577362,..]

%e [1,4,17,_82,499,4264,52361,869270,..]

%e [1,5,26,146,_946,7770,87350,1346062,..]

%e [1,6,37,240,1707,_14246,151501,2159484,..]

%e [1,7,50,370,2914,25582,_267974,3588122,..]

%e [1,8,65,542,4723,44388,473369,_6117202,..]

%o (PARI) {L=20; a=[1]; for(i=1,L,b=a; for(n=0,length(a)-1, b[n+1]=sum(k=0,n,a[k+1]*binomial(n,k)*n^(n-k)); ); a=concat(1,b); ); for(j=1,L,print1(a[j],","))}

%Y Cf. A071207, A088956.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 08 2003