login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) satisfies: 2^a(n)+1 = sum(k=1,n, A089398(k)*2^(k-1)) for n>2, with a(1)=a(2)=0.
1

%I #3 Mar 30 2012 18:36:39

%S 0,0,3,4,5,6,8,9,10,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

%T 27,28,29,30,31,33,34,35,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,

%U 51,51,52,53,54,55,57,58,59,59,61,62,63,64,65,66,67,68,69,69,70,71,72,73

%N a(n) satisfies: 2^a(n)+1 = sum(k=1,n, A089398(k)*2^(k-1)) for n>2, with a(1)=a(2)=0.

%C A089398(n) = n-th column sum of binary digits of k*2^(k-1), where summation is over all k>=1, without carrying from columns sums that may exceed 2.

%e a(7)=8 since 2^8+1=257=(1)+(0)2+(2)2^2+(1)2^3+(1)2^4+(1)2^5+(3)2^6,

%e and A089398 begins: {1,0,2,1,1,1,3,2,2,0,3,2,2,2,4,3,3,1,...}.

%Y Cf. A089398.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Oct 30 2003