login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of triangles in all the dissections of a convex (n+3)-gon by nonintersecting diagonals.
1

%I #19 Dec 24 2017 09:49:23

%S 1,4,20,104,553,2984,16272,89440,494681,2749772,15348372,85967112,

%T 482927985,2719787856,15351385152,86816721792,491819758417,

%U 2790451952660,15854070902964,90187514559208,513619224125657,2928073006131704,16708228671139600,95423104768226144,545408567460801513

%N Total number of triangles in all the dissections of a convex (n+3)-gon by nonintersecting diagonals.

%H Vincenzo Librandi, <a href="/A089382/b089382.txt">Table of n, a(n) for n = 0..200</a>

%F G.f.: (3-z+q)*(1+z-q)^2/(64*q*z^2), where q = sqrt(1-6*z+z^2).

%F Recurrence: n*(n+2)*a(n) = (8*n^2 + 7*n - 3)*a(n-1) - (13*n^2 - 17*n - 6)*a(n-2) + 2*(n-3)*(n+1)*a(n-3). - _Vaclav Kotesovec_, Oct 14 2012

%F a(n) ~ (1 + sqrt(2))^(2*n+3) / (2^(11/4) * sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 14 2012, simplified Dec 24 2017

%F a(n) = Sum_{j=0..n}((-1)^j*2^(n-j)*binomial(n+3,j)*binomial(2*n-j+2,n+2)). - _Vladimir Kruchinin_, Apr 08 2016

%e a(1)=4 because in the three dissections of a square we have altogether four triangles: no triangle in the "no-diagonals" dissection and two triangles in each of the dissections by one of the two diagonals of the square.

%t Table[SeriesCoefficient[(3-x+Sqrt[1-6*x+x^2])*(1+x-Sqrt[1-6*x+x^2])^2/(64*Sqrt[1-6*x+x^2]*x^2),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 14 2012 *)

%o (PARI) x='x+O('x^66); q = sqrt(1-6*x+x^2); Vec((3-x+q)*(1+x-q)^2/(64*q*x^2)) \\ _Joerg Arndt_, May 10 2013

%o (Maxima)

%o a(n):=sum((-1)^j*2^(n-j)*binomial(n+3,j)*binomial(2*n-j+2,n+2),j,0,n); /* _Vladimir Kruchinin_, Apr 08 2016 */

%Y Cf. A001003.

%K nonn

%O 0,2

%A _Emeric Deutsch_, Dec 28 2003