|
|
A089354
|
|
Number of generalized {(1,2),(1,-1)}-Dyck paths of length 3n with no peaks at level 2.
|
|
1
|
|
|
1, 0, 1, 4, 19, 96, 508, 2780, 15607, 89392, 520337, 3069232, 18305876, 110214144, 668950744, 4088824140, 25146253311, 155491812384, 966142729939, 6029139839684, 37771401328459, 237467581184384, 1497754198565104
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2/n)*Sum_{i=0..(n-2)} (-2)^i*(i+1)*binomial(3n+1, n-2-i), n >= 1.
G.f.: g/(1+zg^2), where g=1+zg^3, g(0)=1. Also g=2*sin(arcsin(3*sqrt(3z)/2)/3)/sqrt(3z).
a(n) ~ 3^(3*n+3/2) / (sqrt(Pi) * n^(3/2) * 2^(2*n+5)). - Vaclav Kotesovec, Mar 17 2014
Conjecture D-finite with recurrence 64*n*(2*n+1)*a(n) +8*(-142*n^2+205*n-66)*a(n-1) +2*(880*n^2-3901*n+3924)*a(n-2) +57*(3*n-5)*(3*n-7)*a(n-3)=0. - R. J. Mathar, Sep 15 2020
|
|
EXAMPLE
|
a(3)=4 because we have UUDUDDDDD, UUUDDDDDD, UUDDUDDDD and UUDDDUDDD, where U=(1,2) and D=(1,-1).
|
|
MATHEMATICA
|
Flatten[{1, Table[2/n*Sum[(-2)^i*(i+1)*Binomial[3*n+1, n-2-i], {i, 0, n-2}], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 17 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|