login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089232
Numbers of the form (p1^(p1^2))*(p2^(p2^2))*...*(pk^(pk^2)) where p1,p2,..,pk are distinct primes. (In other words: in the prime factorization of any term, the exponent of p is either 0 or p^2 for all prime p).
1
16, 19683, 314928, 298023223876953125, 4768371582031250000, 5865991115570068359375, 93855857849121093750000, 256923577521058878088611477224235621321607, 4110777240336942049417783635587769941145712, 5057026776347001897418139706204629734473190581
OFFSET
1,1
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = - 1 + Product_{p prime} (1 + 1/p^(p^2)) = 0.06255398059238937510... - Amiram Eldar, Jan 09 2021
MATHEMATICA
seq[max_] := Module[{p = 2, ps = {}, s = {1}, k, n}, While[p^(p^2) < max, AppendTo[ps, p]; p = NextPrime[p]]; n = Length[ps]; Do[p = ps[[k]]; s = Select[Union @ Flatten@Outer[Times, s, {1, p^(p^2)}], # <= max &], {k, 1, n}]; Rest@s]; seq[10^50] (* Amiram Eldar, Jan 09 2021 *)
CROSSREFS
Sequence in context: A283720 A349891 A098175 * A300615 A002489 A060205
KEYWORD
easy,nonn
AUTHOR
Sam Alexander, Dec 11 2003
EXTENSIONS
More terms from Harvey P. Dale, Feb 26 2012
STATUS
approved