login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089203
Primes p such that p-2 and p+2 are divisible by a fourth power.
1
169373, 371873, 574373, 741877, 843127, 979373, 1146877, 1615871, 1688123, 1754377, 1789373, 1855627, 2004833, 2093123, 2260627, 2498123, 2665627, 2700623, 2782757, 2903123, 3206873, 3374377, 3510623, 3560681, 3611873
OFFSET
1,1
LINKS
EXAMPLE
169373 is a term since 169373 - 2 = 3^5*17*41 is divisible by 3^4 and 169373 + 2 = 5^4*271 is divisible by 5^4.
MATHEMATICA
q1[n_] := AnyTrue[FactorInteger[n][[;; , 2]], # > 3 &]; q2[p_] := PrimeQ[p] && q1[p - 2] && q1[p + 2]; Select[Range[4*10^6], q2] (* Amiram Eldar, Mar 24 2021 *)
PROG
(PARI) \\ Input no. of iterations n, power p and number to subtract and add k.
powerfreep4(n, p, k) = { c=0; pc=0; forprime(x=2, n, pc++; if(!ispowerfree(x-k, p) && !ispowerfree(x+k, p), c++; print1(x", "); ) ); }
ispowerfree(m, p1) = { flag=1; y=component(factor(m), 2); for(i=1, length(y), if(y[i] >= p1, flag=0; break); ); return(flag); }
CROSSREFS
Sequence in context: A034211 A308635 A210152 * A236054 A233801 A233802
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 08 2003
STATUS
approved