Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 15 2013 02:05:04
%S 1,22,111,4444,33333,333333,3333333,13333133,133331133,3323333233,
%T 31133331133,333343333433,3333333333333,33333333333333,
%U 333333333333333,3313333333313333,31133333333113333,333323333333323333
%N A coding semi-palindromic sequence made by converting a zero containing limited digit set palindromic sequence to a fraction and then converting back to an continued fraction array and making the sequence up from the result.
%F a(n) = CodeContinuedfraction[Palindromic number[n]]
%t Clear [a, b, c, d, e, f, g, m] (* these continued fraction functions are given in the Mathematica documentation*) CF[r0_?NumericQ, n_Integer?NonNegative] := Module[{l = {}, r = r0, a}, Do[ a = Floor[r]; (* integer part *) AppendTo[l, a]; r = r - a; (* fractional part; 0 <= r < 1 *) If[ r == 0, Break[] ]; r = 1/r; (* r > 1 *), {n}]; l ] CFValue[l_List] := Fold[ 1/#1 + #2&, Infinity, Reverse[l] ] digits=50 c[1]=1 c[2]=0 c[3]=2 c[0]=3 (* general Palindromic continued fraction generator for length m-1*) a[m_]=Delete[Table[If [ Floor[m/2]-n>=0, c[ Mod[n, 4]], c[Mod[m-n, 4]]], {n, 1, m}], m] (* make the fraction from the palindromic array*) e=Table[CFValue[Flatten[Table[a[m], {k, 1, digits}]]], {m, 2, digits}]; (* get the new semi- Palindromic continued fraction array with zeros eliminated*) f[n_]=CF[e[[n]], digits]; (* create new semi-palindromic sequence from the continued fraction array*) g=Table[Sum[f[m][[i]]*10^(i-1), {i, 1, m-1}], {m, 2, digits-1}]
%Y Cf. A007907.
%K nonn,uned,base
%O 2,2
%A _Roger L. Bagula_, Dec 07 2003