Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 02 2022 23:15:58
%S 8,6,6,6,6,0,4,4,9,0,0,3,2,6,9,5,4,3,7,2,2,5,4,7,9,2,4,8,3,7,3,6,2,9,
%T 9,2,1,8,9,4,7,7,0,1,4,8,4,3,8,6,5,3,0,1,1,7,0,2,8,8,5,6,4,3,2,1,4,9,
%U 2,5,9,5,2,7,5,9,1,3,9,2,1,5,7,3,6,8,8,3,6,8,8,2,5,6,3,9,6,8,8,7,9,6,6,2,2
%N Decimal expansion of e^4 - 3e^3 + 2e^2 - e/6.
%C Expected number of picks from a uniform [0,1] needed to first exceed a sum of 4.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/UniformSumDistribution.html">Uniform Sum Distribution</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e e^4 - 3e^3 + 2e^2 - e/6 = 8.6666044900...
%t RealDigits[ E^4 - 3E^3 + 2E^2 - E/6, 10, 111][[1]] (* _Robert G. Wilson v_, Dec 05 2003 *)
%o (PARI) subst(x^4-3*x^3+2*x^2-x/6, x, exp(1)) \\ _Charles R Greathouse IV_, Dec 06 2016
%Y Cf. A001113, A090142, A090143, A090611.
%K nonn,cons,easy
%O 1,1
%A Brian Dunfield (brian.dunfield(AT)sympatico.ca), Dec 05 2003
%E Edited and extended by _Robert G. Wilson v_ and _Ray Chandler_, Dec 07 2003