login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Complement of ((3*A005836) union (3*A005836 - 1) union (3*A005836 - 2)).
4

%I #16 Jan 30 2021 04:12:10

%S 4,5,6,13,14,15,16,17,18,19,20,21,22,23,24,31,32,33,40,41,42,43,44,45,

%T 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,

%U 69,70,71,72,73,74,75,76,77,78,85,86,87,94,95,96,97,98,99,100,101,102

%N Complement of ((3*A005836) union (3*A005836 - 1) union (3*A005836 - 2)).

%C Numbers k such that the Motzkin number A001006(k) == 0 (mod 3).

%C The asymptotic density of this sequence is 1 (Burns, 2016). - _Amiram Eldar_, Jan 30 2021

%H Amiram Eldar, <a href="/A089119/b089119.txt">Table of n, a(n) for n = 1..10000</a>

%H Rob Burns, <a href="https://arxiv.org/abs/1611.04910">Asymptotic density of Motzkin numbers modulo small primes</a>, arXiv:1611.04910 [math.NT], 2016.

%t (* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; Select[Range[0, 120], Mod[m[#], 3] == 0 &] (* _Jean-François Alcover_, Jul 10 2013 *)

%Y Cf. A001006, A005836.

%K nonn

%O 1,1

%A _Emeric Deutsch_ and _Bruce E. Sagan_, Dec 05 2003

%E Offset corrected by _Amiram Eldar_, Jan 30 2021