login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convoluted convolved Fibonacci numbers G_4^(r).
1

%I #20 Jan 05 2025 13:36:24

%S 3,5,7,10,13,16,20,24,28,33,38,43,49,55,61,68,75,82,90,98,106,115,124,

%T 133,143,153,163,174,185,196,208,220,232,245,258,271,285,299,313,328,

%U 343,358,374,390,406,423,440,457,475,493,511,530,549,568,588,608,628

%N Convoluted convolved Fibonacci numbers G_4^(r).

%H P. Moree, <a href="https://arxiv.org/abs/math/0311205">Convoluted convolved Fibonacci numbers</a>, arXiv:math/0311205 [math.CO], 2003.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).

%F G.f.: x*(3 - x - 2*x^3 + x^4)/((1 - x^3)*(1 - x)^2).

%F 9*a(n) = 11 +27*n/2 +3*n^2/2 -A099837(n+3). - _R. J. Mathar_, Jan 09 2024

%p with(numtheory): f := z->1/(1-z-z^2): m := proc(r,j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]),i=1..nops(d)): Wser := simplify(series(W,z=0,80)): coeff(Wser,z^j) end: seq(m(r,4),r=1..60);

%t LinearRecurrence[{2, -1, 1, -2, 1}, {3, 5, 7, 10, 13}, 60] (* _Jean-François Alcover_, Nov 28 2017 *)

%K nonn,easy,changed

%O 1,1

%A _N. J. A. Sloane_, Dec 05 2003

%E Edited by _Emeric Deutsch_, Mar 06 2004