login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089073
Number of symmetric non-crossing connected graphs on n equidistant nodes on a circle.
0
1, 1, 2, 5, 10, 32, 64, 231, 462, 1792, 3584, 14586, 29172, 122880, 245760, 1062347, 2124694, 9371648, 18743296, 84021990, 168043980, 763363328, 1526726656, 7012604550, 14025209100, 65028489216, 130056978432, 607892634420
OFFSET
1,3
COMMENTS
Number of symmetric non-crossing connected graphs on n equidistant nodes on a circle (it is assumed that the axis of symmetry is a diameter of the circle passing through a given node).
LINKS
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
M. R. Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.
FORMULA
a(2k) = 4^k*binomial((3k-1)/2, k)/[2(k+1)], a(2k+1) = 2a(2k).
a(2k) = (1/2)A078531(k), a(2k+1) = A078531(k).
Conjecture D-finite with recurrence n*(n+2)*(23*n^2-162*n+199) *a(n) +12*(27*n^2-47*n-10) *a(n-1) +24*(-27*n^2+47*n+10) *a(n-2) +48 *(27*n^2-47*n-10) *a(n-3) -12*(3*n-13)*(3*n-5)*(23*n^2-116*n+60) *a(n-4)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(4)=5 because on the nodes A,B,C,D (axis of symmetry through A) the only symmetric non-crossing connected graphs are (AB,AC,AD), (AC,BC,DC), (AB,BC,CD,DA), (AB,BC,CD,DA,BD), (AB,BC,CD,DA,AC).
MAPLE
a := proc(n) if n mod 2 = 0 then 4^(n/2)*binomial((3*(n/2)-1)/2, n/2)/2/(n/2+1) else 2*4^((n-1)/2)*binomial((3*((n-1)/2)-1)/2, (n-1)/2)/2/((n-1)/2+1) fi end; seq(a(n), n=1..30);
MATHEMATICA
a[n_] := If[EvenQ[n], 2^n Binomial[(3n-2)/4, n/2]/(n+2), 2^n Binomial[ (3n-5)/4, (n-1)/2]/(n+1)];
Array[a, 28] (* Jean-François Alcover, Jul 29 2018 *)
CROSSREFS
Cf. A078531.
Sequence in context: A226963 A018386 A270521 * A343167 A376849 A138190
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 04 2003
EXTENSIONS
Name edited by Michel Marcus, Jul 30 2018
STATUS
approved