login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First value y satisfying x^2 - 3*y^2 = d^2, where d=A072330(n).
8

%I #12 Mar 07 2020 05:08:34

%S 1,4,3,7,5,8,11,16,20,7,13,20,12,44,9,51,17,52,57,55,19,11,16,28,72,

%T 91,36,65,69,13,23,68,20,25,105,15,88,76,44,120,145,40,87,119,29,85,

%U 24,17,155,132,93,31,44,104,52,92,95,19,140,200,28,105,231,35,100,185,105,120

%N First value y satisfying x^2 - 3*y^2 = d^2, where d=A072330(n).

%H Jean-François Alcover, <a href="/A089020/b089020.txt">Table of n, a(n) for n = 1..1000</a>

%t terms = 1000;

%t nmax = 12 terms;

%t okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], MatchQ[Mod[#, 12], 1|11]&];

%t A072330 = Select[Range[nmax], okQ];

%t a[n_] := Module[{a, b, c, d, p}, d = If[n <= Length[A072330], A072330[[n]], Print["nmax = ", nmax, " insufficient"]; Exit[]]; If[n == 1, 1, For[b = 2 d, True, b++, a = b - d; c = b + d; p = (a + b + c)/2; If[IntegerQ[p] && IntegerQ[Sqrt[p (p - a) (p - b) (p - c)]] && GCD[a, b, c] == 1, Return[ Sqrt[b^2 - 4 d^2]/(2 Sqrt[3])]]]]];

%t a /@ Range[terms] (* _Jean-François Alcover_, Mar 07 2020 *)

%Y For corresponding x see A089019.

%Y Cf. A072330, A072360, A086909, A089019, A096672, A096673, A096674.

%K nonn

%O 1,2

%A _Lekraj Beedassy_, Nov 04 2003

%E Extended by _Ray Chandler_, Jul 03 2004