login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that 2*p(n)+3, 2*p(n+1)+3, 2*p(n+2)+3, 2*p(n+3)+3 are consecutive primes, where p(i) denotes the i-th prime.
7

%I #14 Aug 15 2020 20:22:09

%S 62178,159794,308508,336390,350046,376777,395837,492449,611190,627072,

%T 643266,643267,830501,887720,922151,961608,1009939,1011676,1174998,

%U 1487107,1492042,1725364,1754501,1780962,1815913,2048082,2235662

%N Numbers n such that 2*p(n)+3, 2*p(n+1)+3, 2*p(n+2)+3, 2*p(n+3)+3 are consecutive primes, where p(i) denotes the i-th prime.

%H Pierre CAMI, <a href="/A089009/b089009.txt">Table of n, a(n) for n = 1..135</a>

%e p(62178)=776117, 2*776117+3=1552237=p(117814).

%e p(62179)=776119, 2*776119+3=1552241=p(117815).

%e p(62180)=776137, 2*776137+3=1552277=p(117816).

%e p(62181)=776143, 2*776143+3=1552289=p(117817).

%t cpQ[n_]:=Module[{p1=2Prime[n]+3,p2=2Prime[n+1]+3,p3=2Prime[n+2]+3,p4 = 2Prime[ n+3]+3}, PrimeQ[ p1] &&NextPrime[p1]==p2&&NextPrime[p2]==p3 && NextPrime[p3]==p4]; Select[Range[2236000],cpQ] (* _Harvey P. Dale_, Aug 15 2020 *)

%Y Subsequence of A088066.

%Y Cf. A089007, A089492, A089524.

%K nonn

%O 1,1

%A _Pierre CAMI_, Nov 03 2003

%E Corrected and extended by _Ray Chandler_, Nov 04 2003