Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Feb 24 2022 08:51:54
%S 1,0,1,0,1,2,0,2,7,6,0,6,29,46,24,0,24,146,329,326,120,0,120,874,2521,
%T 3604,2556,720,0,720,6084,21244,39271,40564,22212,5040,0,5040,48348,
%U 197380,444849,598116,479996,212976,40320
%N Triangle T(n,k) read by rows, given by [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938.
%H G. C. Greubel, <a href="/A088996/b088996.txt">Rows n = 0..50 of the triangle, flattened</a>
%H Trevor Hyde, <a href="https://arxiv.org/abs/1803.08438">Liminal reciprocity and factorization statistics</a>, arXiv:1803.08438 [math.NT], 2018.
%F Sum_{k=0..n} (-1)^k*T(n,k) = (-1)^n.
%F From _Vladeta Jovovic_, Dec 15 2004: (Start)
%F E.g.f.: (1-y-y*x)^(-1/(1+x)).
%F Sum_{k=0..n} T(n, k)*x^k = Product_{k=1..n} (k*x+k-1). (End)
%F T(n, k) = n*T(n-1, k-1) + (n-1)*T(n-1, k); T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0. - _Philippe Deléham_, May 22 2005
%F Sum_{k=0..n} T(n,k)*x^(n-k) = A019590(n+1), A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, respectively. Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000007(n), A001147(n), A008544(n), A008545(n), A008546(n), A008543(n), A049209(n), A049210(n), A049211(n), A049212(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - _Philippe Deléham_, Aug 10 2007
%F T(n, k) = Sum_{j=0..n} (-1)^j*binomial(j, n-k)*StirlingS1(n, n-j). - _G. C. Greubel_, Feb 23 2022
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 1, 2;
%e 0, 2, 7, 6;
%e 0, 6, 29, 46, 24;
%e 0, 24, 146, 329, 326, 120;
%e 0, 120, 874, 2521, 3604, 2556, 720;
%e 0, 720, 6084, 21244, 39271, 40564, 22212, 5040;
%e 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
%e ...
%t T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* _Michael De Vlieger_, Jun 19 2018 *)
%o (Sage)
%o def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
%o for n in (0..10): [A088996(n,k) for k in (0..n)] # _Peter Luschny_, May 12 2013
%o (Magma)
%o A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
%o [A088996(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Feb 23 2022
%Y Diagonals give A000007, A000142, A067318.
%Y Cf. A001147 (row sums), A048994, A059364, A084938.
%K easy,nonn,tabl
%O 0,6
%A _Philippe Deléham_, Dec 01 2003, Aug 17 2007