login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088978
Number of Pythagorean triangles having the n-th prime prime(n) as one of their sides.
2
0, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1
OFFSET
1,3
COMMENTS
Primitive Pythagorean triples are given parametrically by (M^2 - N^2)^2 + (2MN)^2 = (M^2 + N^2)^2. Odd primes are uniquely representable (ignoring signs) as M^2 - N^2, but only primes of the form 4k + 1 are uniquely representable as M^2 + N^2. Since 2MN is composite for MN > 1, an odd prime can be a side of one or two Pythagorean triangles. Thus, except for a(1) = 0, a(n) is 2 for prime(n) of the form 4k + 1, and 1 otherwise. - Chris Boyd, Jan 25 2016
LINKS
MAPLE
0, seq((4-ithprime(i) mod 4 + 1)/2, i=2..1000); # Robert Israel, Jan 25 2016
MATHEMATICA
Table[(4 - Mod[Prime@ n, 4] + 1)/2, {n, 105}] /. _Rational -> 0 (* Michael De Vlieger, Jan 26 2016 *)
PROG
(PARI) a088978(n) = my(p=prime(n)); if(p==2, 0, if((p-1)%4==0, 2, 1))
for(i=1, 105, print1(a088978(i), ", ")) \\ Chris Boyd, Jan 25 2016
(Magma) [0] cat [(4-NthPrime(n) mod 4+1)/2: n in [2..100]]; // Vincenzo Librandi, Jan 26 2016
CROSSREFS
Cf. A046081.
Sequence in context: A264840 A308188 A046219 * A276948 A160245 A154351
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Oct 31 2003
EXTENSIONS
Corrected and extended by Ray Chandler, Nov 01 2003
STATUS
approved