login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Side of primitive equilateral triangle with prime cevian p=A002476(n) cutting an edge into two integral parts.
9

%I #20 Jul 07 2023 14:59:00

%S 8,15,21,35,40,48,65,77,80,91,112,117,119,133,160,168,171,187,207,209,

%T 221,224,253,255,264,280,312,323,325,341,352,377,391,403,408,425,435,

%U 440,455,465,483,504,525,527,560,576,595,609,624,645,651,665,667,703

%N Side of primitive equilateral triangle with prime cevian p=A002476(n) cutting an edge into two integral parts.

%C The edge a(n) is partitioned into q=s^2 - t^2=A088243(n)*A088296(n) and r=t(2s+t)=A088242(n)*A088299(n) by a cevian of length p. [Alternatively, (p,q,r) form a triangle with angle 2pi/3 opposite side p.] The quadruple {p,q,r,a(n)=q+r} satisfies the triangle relation: see A061281, or the simpler relation a(n)^2 = p^2 + q*r.

%H Jean-François Alcover, <a href="/A088977/b088977.txt">Table of n, a(n) for n = 1..2918</a>

%H F. Barnes, <a href="http://www.geocities.ws/fredlb37/node16.html">Deriving 60 degree triples</a>

%F a(n) = A088241(n)*A088298(n) = s(s+2t), where s^2 + st + t^2, with s>t, form the primes p = 1 (mod 6) = A002476(n).

%t sol[p_] := Solve[0 < t < s && s^2 + s t + t^2 == p, {s, t}, Integers];

%t Union[Reap[For[n = 1, n <= 10000, n++, If[PrimeQ[p = 6n + 1], an = s(s + 2t) /. sol[p][[1]]]; Sow[an]]][[2, 1]]] (* _Jean-François Alcover_, Mar 06 2020 *)

%Y Cf. A002476, A088241, A088242, A088243, A088296, A088298, A088299.

%K nonn

%O 1,1

%A _Lekraj Beedassy_, Oct 31 2003

%E More terms from _Ray Chandler_, Nov 01 2003