login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088966
Numbers n such that A007947(n) = A007947(m+1) and A007947(m) = A007947(n+1), where n > m.
4
3, 8, 24, 80, 288, 1088, 4224, 4374, 16640, 66048, 263168, 1050624, 4198400
OFFSET
1,1
COMMENTS
For every k >= 0, the sequence includes 4^k + 2^(k+1), with m = 2^k + 1. - David Wasserman, Jan 29 2004
So a(13) <= 4198400. - Michel Marcus, Aug 10 2014
Are there other terms like 4374 that are not of this form? - Michel Marcus, Aug 10 2014
FORMULA
G.f.: Conjecture: Q(0)/x - 1/x where Q(k)= 1 + 2^k*x/(1 - 2*x/(2*x + 2^k*x/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 10 2013
EXAMPLE
With n=3 and m=2, rad(3) = rad(3) and rad(2) = rad(4), so 3 is in the sequence.
MAPLE
rad:= n -> convert(numtheory:-factorset(n), `*`):
count:= 0: lastr:= rad(1):
for n from 2 to 10^7 do
newr:= rad(n);
P[lastr, newr]:= n-1;
if assigned(P[newr, lastr]) then
count:= count+1; A[count]:= n-1; M[count]:= P[newr, lastr];
fi;
lastr:= newr;
od:
seq(A[n], n=1..count); # Robert Israel, Aug 10 2014
MATHEMATICA
(* Recomputation up to a(13), assuming m of the form 2^k+1 *)
rad[n_] := rad[n] = Select[Divisors[n], SquareFreeQ][[-1]];
okQ[n_] := Module[{r = rad[n], r1 = rad[n+1], k, m}, For[k = 0, k < Log[2, n-1], k++, m = 2^k+1; If[r == rad[m+1] && rad[m] == r1, Return[True]]]; False];
Reap[For[n = 1, n <= 5*10^6, n++, If[okQ[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Apr 11 2019 *)
PROG
(PARI) lista(nn) = {v = vector(nn, i, rad(i)); for (n=1, nn-1, ok = 0; if (n % 2, ma = 2, ma = 1); forstep (m = ma, n-1, 2, if ((v[n] == v[m+1]) && (v[m] == v[n+1]), ok = 1; break); ); if (ok, print1(n, ", ")); ); } \\ Michel Marcus, Aug 10 2014
CROSSREFS
Cf. A007947 (rad(n)), A087914 (similar sequence), A091697 (the values of m).
Sequence in context: A148785 A148786 A215576 * A242985 A148787 A371979
KEYWORD
nonn,more
AUTHOR
Naohiro Nomoto, Oct 29 2003
EXTENSIONS
More terms from David Wasserman, Jan 29 2004
a(13) confirmed by Robert Israel, Aug 10 2014
STATUS
approved