%I
%S 1,2,2,3,2,4,4,3,4,2,5,5,5,4,5,5,5,4,5,5,3,5,5,5,4,5,2,6,6,6,6,5,6,6,
%T 6,6,5,6,6,6,6,5,6,6,6,4,6,6,6,6,5,6,6,6,6,5,6,6,6,6,5,6,6,6,4,6,6,6,
%U 6,5,6,6,6,6,5,6,6,3,6,6,6,6,5,6,6,6,6,5,6,6,6,6,5,6,6,6,4,6,6,6,6,5,6,2,7
%N a(1)=1, a(2)=2 then a(A(k))=a(k) where a(1),a(2),...,a(k) are k consecutive defined terms and A(k)=a(1)+a(2)+...+a(k). Fill in any undefined places with max{a(i)+1 : 1<=i<=k}.
%F a(2+(1/2)*{sum(k=1, n, sum(i=0, k, i!)))=2
%Y Cf. A088937(partial sums), A088938 (occurrences of 2's), A088939, A088940.
%K nonn
%O 1,2
%A _Benoit Cloitre_ and Claude Lenormand (claude.lenormand(AT)free.fr), Oct 25 2003
