%I #18 Mar 04 2024 16:16:22
%S 0,1,291,16096,356232,4411517,36621423,227095448,1128128568,
%T 4708376529,17078744419,55199550120,161993768080,438011626365,
%U 1103841220991,2616890599056,5880356075792,12602902382337
%N Polynexus numbers of order 14.
%H Bruno Berselli, <a href="/A088892/b088892.txt">Table of n, a(n) for n = 1..1000</a>
%H X. Acloque, <a href="http://www.fortunecity.fr/polynexus/index.html">Polynexus Numbers and other mathematical wonders</a> [broken link]
%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
%F a(n) = ((n^14-(n-1)^14)-(n^2-(n-1)^2))/16380 = ((n^14-(n-1)^14)-(n^2-(n-1)^2))/(2^14-2^2).
%F G.f.: x^2*(1+x)*(1+276*x+11837*x^2+145168*x^3+638914*x^4+1068728*x^5+638914*x^6+145168*x^7+11837*x^8+276*x^9+x^10)/(1-x)^14. - Bruno Berselli, Feb 08 2012
%t Table[((n^14 - (n - 1)^14) - (n^2 - (n - 1)^2))/16380, {n, 20}] (* _Bruno Berselli_, Feb 08 2012 *)
%t LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{0,1,291,16096,356232,4411517,36621423,227095448,1128128568,4708376529,17078744419,55199550120,161993768080,438011626365},20] (* _Harvey P. Dale_, Mar 04 2024 *)
%Y Cf. A079547, A083200, A088889, A088890, A088891, A088893, A088894.
%K nonn,easy
%O 1,3
%A Xavier Acloque, Oct 21 2003
%E First term added according to the formula from Bruno Berselli, Feb 08 2012