login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Polynexus numbers of order 14.
6

%I #18 Mar 04 2024 16:16:22

%S 0,1,291,16096,356232,4411517,36621423,227095448,1128128568,

%T 4708376529,17078744419,55199550120,161993768080,438011626365,

%U 1103841220991,2616890599056,5880356075792,12602902382337

%N Polynexus numbers of order 14.

%H Bruno Berselli, <a href="/A088892/b088892.txt">Table of n, a(n) for n = 1..1000</a>

%H X. Acloque, <a href="http://www.fortunecity.fr/polynexus/index.html">Polynexus Numbers and other mathematical wonders</a> [broken link]

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).

%F a(n) = ((n^14-(n-1)^14)-(n^2-(n-1)^2))/16380 = ((n^14-(n-1)^14)-(n^2-(n-1)^2))/(2^14-2^2).

%F G.f.: x^2*(1+x)*(1+276*x+11837*x^2+145168*x^3+638914*x^4+1068728*x^5+638914*x^6+145168*x^7+11837*x^8+276*x^9+x^10)/(1-x)^14. - Bruno Berselli, Feb 08 2012

%t Table[((n^14 - (n - 1)^14) - (n^2 - (n - 1)^2))/16380, {n, 20}] (* _Bruno Berselli_, Feb 08 2012 *)

%t LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{0,1,291,16096,356232,4411517,36621423,227095448,1128128568,4708376529,17078744419,55199550120,161993768080,438011626365},20] (* _Harvey P. Dale_, Mar 04 2024 *)

%Y Cf. A079547, A083200, A088889, A088890, A088891, A088893, A088894.

%K nonn,easy

%O 1,3

%A Xavier Acloque, Oct 21 2003

%E First term added according to the formula from Bruno Berselli, Feb 08 2012