Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 27 2022 02:09:15
%S 1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1,
%T 8,1,1,1,1,1,1,8,1,1,1,1,1,1,57,1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,
%U 1,8,1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1,57,1,1,1,1,1,1,8
%N Denominator of the quotient sigma(7n)/sigma(n).
%C Sum of powers of 7 dividing n. - _Amiram Eldar_, Nov 27 2022
%H Amiram Eldar, <a href="/A088842/b088842.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{k>=0} 7^k * x^(7^k) / (1 - x^(7^k)). - _Ilya Gutkovskiy_, Dec 15 2020
%F From _Amiram Eldar_, Nov 27 2022: (Start)
%F Multiplicative with a(7^e) = (7^(e+1)-1)/6, and a(p^e) = 1 for p != 7.
%F Dirichlet g.f.: zeta(s) / (1 - 7^(1 - s)).
%F Sum_{k=1..n} a(k) ~ n*log_7(n) + (1/2 + (gamma - 1)/log(7))*n, where gamma is Euler's constant (A001620). (End)
%t Table[Denominator[DivisorSigma[1, 7*n]/DivisorSigma[1, n]], {n, 1, 128}] (* corrected by _Ilya Gutkovskiy_, Dec 15 2020 *)
%t a[n_] := (7^(IntegerExponent[n, 7] + 1) - 1)/6; Array[a, 100] (* _Amiram Eldar_, Nov 27 2022 *)
%o (PARI) a(n) = denominator(sigma(7*n)/sigma(n)); \\ _Michel Marcus_, Dec 15 2020
%o (PARI) a(n) = (7^(valuation(n, 7) + 1) - 1)/6; \\ _Amiram Eldar_, Nov 27 2022
%Y Cf. A000203 (sigma), A001620, A088841 (numerators), A283078 (sigma(7n)).
%Y Cf. A080278, A038712, A088837, A088838, A088839, A088840.
%K nonn,mult,frac
%O 1,7
%A _Labos Elemer_, Nov 04 2003