login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of sigma(4n)/sigma(n).
6

%I #21 Oct 03 2023 13:11:49

%S 1,1,1,7,1,1,1,5,1,1,1,7,1,1,1,31,1,1,1,7,1,1,1,5,1,1,1,7,1,1,1,21,1,

%T 1,1,7,1,1,1,5,1,1,1,7,1,1,1,31,1,1,1,7,1,1,1,5,1,1,1,7,1,1,1,127,1,1,

%U 1,7,1,1,1,5,1,1,1,7,1,1,1,31,1,1,1,7,1,1,1,5,1,1,1,7,1,1,1,21,1,1,1,7,1,1

%N Denominator of sigma(4n)/sigma(n).

%H Antti Karttunen, <a href="/A088840/b088840.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

%F From _Amiram Eldar_, Oct 03 2023: (Start)

%F Multiplicative with a(2^e) = (((-1)^e+2)*(2^(e+1)-1))/3 = A213243(e+1), and a(p^e) = 1 for an odd prime p.

%F a(n) = A213243(A007814(n+1)).

%F Dirichlet g.f.: ((8^s + 4^s + 2^(s+1))/(8^s + 4^s - 2^(s+2) - 4)) * zeta(s).

%F Sum_{k=1..n} a(k) = (2*n/(3*log(2))) * (log(n) + gamma - 1 + 7*log(2)/12), where gamma is Euler's constant (A001620). (End)

%t Table[Denominator[DivisorSigma[1, 4*n]/DivisorSigma[1, n]], {n, 1, 128}]

%t a[n_] := Module[{e = IntegerExponent[n, 2]}, (((-1)^e+2)*(2^(e+1)-1))/3]; Array[a, 100] (* _Amiram Eldar_, Oct 03 2023 *)

%o (PARI) A088840(n) = denominator(sigma(4*n)/sigma(n)); \\ _Antti Karttunen_, Nov 18 2017

%o (PARI) a(n) = {my(e = valuation(n, 2)); (((-1)^e+2) * (2^(e+1)-1))/3;} \\ _Amiram Eldar_, Oct 03 2023

%Y See A088839 for numerator.

%Y Cf. A088837, A088838, A088841, A038712, A080278, A000203, A001620, A007814, A193553, A213243.

%K easy,nonn,mult,frac

%O 1,4

%A _Labos Elemer_, Nov 04 2003

%E Typo in definition corrected by _Antti Karttunen_, Nov 18 2017