Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 May 23 2022 09:11:09
%S 1,1,4,24,190,1860,21638,291158,4443556,75779580,1427272032,
%T 29409572808,657829667328,15868725580344,410543007882408,
%U 11336582934052104,332736828827893968,10342443317857993680,339343476195341474688
%N Expansion of e.g.f. (1-x)^(-1/(1+log(1-x))).
%H G. C. Greubel, <a href="/A088815/b088815.txt">Table of n, a(n) for n = 0..410</a>
%F a(n) = Sum_{k=0..n} |Stirling1(n, k)|*A000262(k). - _Vladeta Jovovic_, Nov 26 2003
%F a(n) ~ n! * exp(n + 2*sqrt(n)/sqrt(exp(1)-1) + 1/(2*(exp(1)-1)) - 1/2) / (2*sqrt(Pi) * (exp(1)-1)^(n+1/4) * n^(3/4)). - _Vaclav Kotesovec_, May 04 2015
%F a(0) = 1; a(n) = Sum_{k=1..n} A007840(k) * binomial(n-1,k-1) * a(n-k). - _Seiichi Manyama_, May 23 2022
%t With[{nn=20},CoefficientList[Series[(1-x)^(-1/(1+Log[1-x])), {x,0,nn}], x]Range[0,nn]!] (* _Harvey P. Dale_, Nov 29 2011 *)
%o (PARI) x='x+O('x^25); Vec(serlaplace((1-x)^(-1/(1+log(1-x))))) \\ _G. C. Greubel_, Feb 16 2017
%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, k!*abs(stirling(j, k, 1)))*binomial(i-1, j-1)*v[i-j+1])); v; \\ _Seiichi Manyama_, May 23 2022
%Y Row sums of A079640.
%Y Cf. A000262, A007840, A088819.
%K nonn
%O 0,3
%A _Vladeta Jovovic_, Nov 22 2003