Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 22 2019 09:00:13
%S 2,4,4,4,2,4,4,6,6,2,4,8,2,2,14,6,10,6,4,6,10,4,12,4,4,2,6,6,6,2,14,2,
%T 14,10,4,8,6,6,4,10,10,6,6,4,4,8,8,6,2,6,6,2,10,6,6,4,12,2,6,2,4,8,8,
%U 8,6,8,4,4,10,2,2,2,14,2,14,2,20,8,8,6,14,6,8,12,6,10,6,2,2,18,2,6,8,6,2
%N a(n) = prime(2n+1) - prime(2n).
%C Partition the primes into pairs starting with 3: (3, 5), (7, 11), (13, 17), (19, 23), (29, 31), (37, 41), (43, 47). Sequence gives differences between pairs.
%C A bisection of A001223.
%F a(n) = A001223(2*n).
%t Table[Prime[2n + 1] - Prime[2n], {n, 100}] (* _Robert G. Wilson v_, May 29 2004 *)
%t Differences/@Partition[Prime[Range[2,200]],2]//Flatten (* _Harvey P. Dale_, Sep 22 2019 *)
%Y Cf. A078584, A088682, A088683, A088684, A078584.
%K base,easy,nonn
%O 1,1
%A _Zak Seidov_, Oct 05 2003
%E Edited by _Robert G. Wilson v_, May 29 2004
%E Offset corrected. - _R. J. Mathar_, Feb 23 2017