%I #15 Sep 22 2019 09:00:13
%S 2,4,4,4,2,4,4,6,6,2,4,8,2,2,14,6,10,6,4,6,10,4,12,4,4,2,6,6,6,2,14,2,
%T 14,10,4,8,6,6,4,10,10,6,6,4,4,8,8,6,2,6,6,2,10,6,6,4,12,2,6,2,4,8,8,
%U 8,6,8,4,4,10,2,2,2,14,2,14,2,20,8,8,6,14,6,8,12,6,10,6,2,2,18,2,6,8,6,2
%N a(n) = prime(2n+1) - prime(2n).
%C Partition the primes into pairs starting with 3: (3, 5), (7, 11), (13, 17), (19, 23), (29, 31), (37, 41), (43, 47). Sequence gives differences between pairs.
%C A bisection of A001223.
%F a(n) = A001223(2*n).
%t Table[Prime[2n + 1] - Prime[2n], {n, 100}] (* _Robert G. Wilson v_, May 29 2004 *)
%t Differences/@Partition[Prime[Range[2,200]],2]//Flatten (* _Harvey P. Dale_, Sep 22 2019 *)
%Y Cf. A078584, A088682, A088683, A088684, A078584.
%K base,easy,nonn
%O 1,1
%A _Zak Seidov_, Oct 05 2003
%E Edited by _Robert G. Wilson v_, May 29 2004
%E Offset corrected. - _R. J. Mathar_, Feb 23 2017