login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of triangles in an n X n unit grid that have minimal possible area (of 1/2).
12

%I #20 Aug 15 2021 21:52:31

%S 0,4,32,124,320,716,1328,2340,3792,5852,8544,12260,16864,22916,30272,

%T 39188,49824,62948,78080,96348,117232,141260,168480,200292,235680,

%U 276100,321056,371484,427024,489900,558112,634724,718432,810116,909600,1018388,1135136,1263828,1402304,1551908

%N Number of triangles in an n X n unit grid that have minimal possible area (of 1/2).

%H Ray Chandler, <a href="/A088658/b088658.txt">Table of n, a(n) for n = 1..1000</a>

%H N. J. A. Sloane, <a href="/A115004/a115004.txt">Families of Essentially Identical Sequences</a>, Mar 24 2021 (Includes this sequence)

%F a(n+1) = 4*A115004(n).

%F a(n) = 4*(n-1)^2 + 4*Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - _Chai Wah Wu_, Aug 15 2021

%e a(2)=4 because 4 (isosceles right) triangles with area 1/2 can be placed on a 2 X 2 grid.

%t z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];

%t a[n_] := 4 z[n - 1];

%t Array[a, 40] (* _Jean-François Alcover_, Mar 24 2020 *)

%o (Python)

%o from sympy import totient

%o def A088658(n): return 4*(n-1)**2 + 4*sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # _Chai Wah Wu_, Aug 15 2021

%Y Cf. A045996.

%Y The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - _N. J. A. Sloane_, Feb 04 2020

%K nonn

%O 1,2

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 21 2003

%E a(7)-a(28) from _Ray Chandler_, May 03 2011

%E Corrected and extended by _Ray Chandler_, May 18 2011