Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 19 2015 01:33:22
%S 11,127,1123,1423,112543,1124653,1234657,112345687,1123465789,
%T 10123457689,10111123456879,1011111223457689,10111112233469857,
%U 10111111122334456879,1011111111223344557689,10111111112233445569867
%N Smallest prime using all the digits of first n numbers. If necessary, extra digits can be used.
%C Conjecture: There exists a number k such that for all m > k, m not == 0 or 2 (mod 3), a(m) does not use any extra digit.
%H Ray Chandler, <a href="/A088628/b088628.txt">Table of n, a(n) for n = 1..369</a> (terms < 10^1000)
%H Ray Chandler, <a href="/A088628/a088628.txt">Mathematica program for A088628</a>
%e a(5) = 112543 which is the smallest prime containing digits 1 to 5.
%e a(10) = 10123457689 is the smallest prime containing digits of 1,2,3,4,5,6,7,8,9 and 10.
%t For a(11): d = {1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4}; a = Map[ FromDigits, Join[ d, # ] & /@ Permutations[{5, 6, 7, 8, 9}]]; Min[ Select[ a, PrimeQ[ # ] & ]] (* _Robert G. Wilson v_, Nov 06 2003 *)
%t (* See above link for another program *)
%K base,nonn
%O 1,1
%A _Amarnath Murthy_, Oct 21 2003
%E a(8) and a(9) from _Robert G. Wilson v_, Oct 22 2003
%E a(10) from _Ray Chandler_, Nov 01 2003
%E a(11) through a(16) from _Robert G. Wilson v_, Nov 06 2003