login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that the p-th digit in the decimal expansion of Pi is 1.
5

%I #10 Jul 29 2024 05:31:33

%S 2,41,139,149,199,239,251,397,433,439,443,491,569,599,641,647,661,787,

%T 853,883,1031,1087,1097,1153,1187,1319,1423,1613,1619,1637,1657,1667,

%U 1697,1759,1789,2081,2129,2143,2221,2239,2459,2633,2689,2741,2753,2777

%N Primes p such that the p-th digit in the decimal expansion of Pi is 1.

%H Harvey P. Dale, <a href="/A088565/b088565.txt">Table of n, a(n) for n = 1..1000</a>

%e The 1st digit 1 in Pi is in the 2nd place of the digits 3,1,4,1,5,9,..., and 2 is prime, whence a(1) = 2. [Corrected and edited by _M. F. Hasler_, Jul 29 2024]

%t Select[Flatten[Position[RealDigits[Pi,10,2800][[1]],1]],PrimeQ] (* _Harvey P. Dale_, May 05 2019 *)

%o (PARI) pizeros(n,d) = { default(realprecision,5000); p = Pi; v = Vec(Str(p)); for(x=1,n, if(v[x] == Str(d) && isprime(x-1),print1(x-1",")) ) }

%o (PARI) A088565_upto(N=3456, d=1)={localprec(N+20); [p|p<-primes([1, #N=digits(Pi\10^-N)]), N[p]==d]} \\ _M. F. Hasler_, Jul 29 2024

%Y Primes in A014976.

%Y Cf. A088563, A088566 (the same for digits 0 and 2), A000796 (decimal digits of Pi).

%K nonn,base

%O 1,1

%A _Cino Hilliard_, Nov 19 2003