Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 23 2020 17:34:55
%S 1,1,1,3,2,6,5,1,3,10,7,9,1,2,6,5,17,18,11,13,15,10,2,1,11,10,7,9,17,
%T 30,31,31,19,22,22,27,26,23,18,1,1,1,6,19,17,18,17,13,15,14,30,29,53,
%U 50,55,55,50,33,34,38,38,39,49,47,46,46,41,29,31,1,2,6,1,1,3,10,34,34,34,30
%N The survivor w(n,4) in a modified Josephus problem, with a step of 4.
%H Chris Groër, <a href="http://www.jstor.org/stable/3647800">The Mathematics of Survival: From Antiquity to the Playground</a>, Amer. Math. Monthly, 110(9) (2003), 812-825.
%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>
%t w4[1] = v4[1] = u4[1] = 1; w4[n_] := w4[n] = Switch[ Mod[n, 4], 0, n + 1 - Ceiling[4w4[ Ceiling[3n/4]]/3], 1, n + 1 - Floor[(4w4[ Ceiling[3n/4]] + 1)/3], 2, n + 1 - Floor[4v4[ Ceiling[3n/4]]/3], 3, n + 1 - Floor[(4u4[ Ceiling[3n/4]] - 1)/3]]; v4[n_] := v4[n] = Switch[ Mod[n, 4], 0, n + 1 - Floor[(4w4[ Ceiling[3n/4]] + 1)/3], 1, n + 1 - Floor[(4v4[ Ceiling[3n/4]])/3], 2, n + 1 - Floor[(4u4[ Ceiling[3n/4]] - 1)/3], 3, n + 1 - Ceiling[ 4w4[ Floor[3n/4]]/3]]; u4[n_] := u4[n] = Switch[ Mod[n, 4], 0, n + 1 - Floor[ 4v4[ Ceiling[3n/4]]/3], 1, n + 1 - Floor[ (4u4[ Ceiling[3n/4]] - 1)/3], 2, n + 1 - Ceiling[ 4w4[ Floor[3n/4]]/3], 3, n + 1 - Floor[(4w4[ Floor[3n/4]] + 1)/3]]; Table[ w4[n], {n, 81}] (* from Chris Groer modified by _Robert G. Wilson v_ Nov 15 2003 *)
%Y Cf. A006257, A088442, A088443, A090569.
%K nonn
%O 1,4
%A _N. J. A. Sloane_, Nov 09 2003
%E Terms computed by Chris Groer (cgroer(AT)math.uga.edu)