login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n*(n!)^3.
1

%I #30 Dec 13 2022 02:59:33

%S 1,2,32,1728,221184,55296000,23887872000,16387080192000,

%T 16780370116608000,24465779630014464000,48931559260028928000000,

%U 130255810750197006336000000,450164081952680853897216000000,1978020976100079672024367104000000,10855379116837237240069726666752000000

%N a(n) = 2^n*(n!)^3.

%C A010050(n) / a(n) is the probability that there will be no intersections among n rays in the plane with endpoints chosen randomly, uniformly, and independently on a given line segment and angles chosen randomly, uniformly, and independently in [0, 2*Pi). - _Jason Zimba_, Apr 03 2022

%H G. C. Greubel, <a href="/A088386/b088386.txt">Table of n, a(n) for n = 0..172</a>

%F a(0) = 1; a(n) = 2*n^3*a(n-1) for n >= 1. - _Georg Fischer_, May 23 2021

%t Table[2^n*(n!)^3, {n,0,20}] (* _G. C. Greubel_, Dec 12 2022 *)

%o (PARI) for(n=0,20,print1(2^n*(n!)^3, ", "));

%o (Magma) [2^n*Factorial(n)^3: n in [0..20]]; // _G. C. Greubel_, Dec 12 2022

%o (SageMath) [2^n*factorial(n)^3 for n in range(21)] # _G. C. Greubel_, Dec 12 2022

%Y Cf. A000165, A010050, A055546.

%K nonn,easy

%O 0,2

%A _Cino Hilliard_, Nov 08 2003

%E Offset corrected from 1 to 0 and definition changed by _Georg Fischer_, May 23 2021